Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

1. Fill in the blanks with the correct numbers.

 (1) If the equation $\sqrt{2}x^2 - \sqrt{3}x + k = 0$ with k a constant has two solutions $\sin \theta$ and $\cos \theta \left(0 \leq \theta \leq \frac{\pi}{2}\right)$, then $k =$ \underline{ }.

 (2) Let a be a real constant. If the constant term of $(x^3 + \frac{a}{x^2})^5$ is equal to -270, then $a =$ \underline{ }.

 (3) If the functions $f(x) = \frac{3x + 1}{2x + 1}$, $g(x) = \frac{px + 1}{2x - 3}$ satisfy the relation $f(g(x)) = x \left(x \neq -\frac{1}{2}, \frac{3}{2}\right)$, then the constant $p =$ \underline{ }.

 (4) The solution to the inequality $\log_2 x + \log_2(x - 2) < 4 \log_{16} 8$, in the set of real numbers, is \underline{ } < x < \underline{ }.

 (5) The total number of positive divisors of 600 is \underline{ }, and the whole sum of those divisors is \underline{ }.
2. There are two circles, C of radius 1 and C_r of radius r, which intersect on a plain. At each of the two intersecting points on the circumferences of C and C_r, the tangent to C and that to C_r form an angle of 120° outside of C and C_r. Fill in the blanks with the answers to the following questions.

(1) Express the distance d between the centers of C and C_r in terms of r.

(2) Calculate the value of r at which d in (1) attains the minimum.

(3) In case (2), express the area of the intersection of C and C_r in terms of the constant π.

\[
\begin{array}{ccc}
(1) & (2) & (3) \\
\hline
\end{array}
\]

3. Consider the function $y = 8^x - 9 \cdot 4^x + 15 \cdot 2^x$ of x ($-\infty < x < \infty$). Fill in the blanks with the answers to the following questions.

(1) Let X denote 2^x. Express y in terms of X.

(2) Calculate the local maximum and minimum of y, and the values of X in (1) at which y attains them.

(3) Calculate the global maximum and minimum of y in the interval $0 \leq x \leq \log_2 7$, and the values of x at which y attains them.

\[
\begin{array}{ccc}
(1) y = & \hline
(2) \text{The local maximum is } & \hline \\
\text{at } X = & \hline \\
\text{the local minimum is } & \hline \\
\text{at } X = & \hline \\
(3) \text{The global maximum is } & \hline \\
\text{at } x = & \hline \\
\text{the global minimum is } & \hline \\
\text{at } x = & \hline \\
\end{array}
\]